If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8u^2+5u=0
a = 8; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·8·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*8}=\frac{-10}{16} =-5/8 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*8}=\frac{0}{16} =0 $
| 1/8g+7=9 | | 4(3x+5)=-42+12 | | -3x(4x+3)+5(4x+2)=-95 | | 4x−3(x+2)=−5 | | 130=21x+4 | | -5j+10-8j=-9j-10 | | X=5/6v+2;v | | 7-5p+12=-8 | | X=5/6v+2 | | .5+16=4-2/3/x | | 6y+12-4=10 | | 3m²+8=15; | | 220x-20= | | 4(44)21=2x | | 7.3y-5.18=-51.9$y= | | 5x-1=12x+7 | | 5(x-3)-3=3x | | 2x(x)=5x-9 | | 3x-40=x+14 | | 7x+20+2(2-5)=x | | 4=14x+3=10 | | 50=5n+26 | | 10-m=-8+5m | | n=3.144 | | -2+25x=+17=-35 | | 2/3x+2=11/3x+3 | | 9=4x+7(2-7x) | | -2/5(35-10x)=4x+14 | | 3x=7x+1/3 | | 10(6+3x)+9=129 | | 2+3^(a+2)=486 | | −x=32 |